EEEE;IEE“YI Matematika és Szamitastudomany Tanszék

UNIVERSITY OF GYOR

J

Targytematika / Course Description
Production Software Development

GKNM_MSTA092

Targyfelelés neve /

Teacher's name: dr. Bakosi Jozsef Félév / Semester: 2024/25/1
Beszamolasi forma /

Assesment: Folyamatos szamonkérés

Targy heti 6raszama / Targy féléves 6raszama /

Teaching hours(week): 2/2/0 Teaching hours(sem.): 0/0/0

OKTATAS CELJA / AIM OF THE COURSE

Prepare students for software development in large institutions (e.g., laboratories, industry) with hundreds or
thousands of employees.

TANTARGY TARTALMA / DESCRIPTION

1 Key concepts, software engineering, types of software development
Concepts. The difference between computer science vs. software engineering. Which one is better? The
difference between computer vs. computational science. Which one is better? The difference between research
vs. production code. Which one 1s better? Why should you care?
2 Tools for productivity
Terminal. Terminal multiplexers. Shell utilities. File managers. Editors. Code search and navigation.
Symbolic and numeric math tools. Build systems. Build automation tools. Documentation generators. Testing
frameworks. Tools for testing. Code analysis tools. Version control and code history. Libraries as tools. Code
review tools. Team communication tools.
3 Version control
Why use version control? Git. Github and alternatives. Basic usage. Proper commit messages. Resolving
conflicts. Stash. Rewriting history.
4 Build systems
What are build systems? Why use build systems? Build correctness, performance, automation and
portability. Parallel and distributed builds. Scalability. Off-the-shelf and custom build systems. CMake, GNU
make, Ninja.
5 Documentation
Why document? Specifics for computational and production codes. Documenting theory, software
requirements, specification, design, implementation, and interfaces. Documenting verification and validation
cases and user examples. Source code control history as documentation. Documenting and archiving team
collaboration. Documenting code correctness. Tracking code quality. Tools.
6 Testing, continuous integration, code quality
Why test? Types of tests. Unit tests. Regression tests. Acceptance tests. Verification and validation.
Performance testing and regression. Static and dynamic code analysis. Test-driven development. Testing
frameworks and libraries. Build systems integration. Fuzz testing. Continuous integration: automation of code
review, code changes, builds, testing, deployment.

2024.12.10. 11:37:15 NEPTUN.NET Egységes Tanulmanyi Rendszer 1



7 Testing, continuous integration, code quality, cont
Tools for continuous integration. Measuring test code coverage. Automating code coverage measurement.
Build system integration. Instrumentation. Memory-error detection. Thread-error detection. Cache-, and
branch-prediction profiling. Heap-profiling.
8 Programming styles
Procedural, object oriented, generic, functional programming styles. Languages. Using the right tool for the
right job. Code correctness. Power consumption. Compile and runtime performance. Maintainability.
Productivity. User and developer friendliness.
9 Software design
Why design production code? Process. Requirements. Specifications. Value. Artifacts. Design principles.
Design concepts. Design considerations. Modeling languages. Design patterns. Priorities for writing code.
Programmer productivity.
10 Third-party libraries
Pros and cons of using third-party libraries. Libraries for computational code. Maintenance. Upstream
contributions.
11 Software development in teams, effective communication
Effective team communication. Archiving communication. Centralized vs. decentralized and synchronous
vs. asynchronous comunication. The Cathedral and the Bazaar. Available tools. Software development
methodologies: agile, waterfall, feature-driven, extreme programming,.
12 Code review
The importance of code review. The de-facto standard open-source code development process (Github
flow). Code review in distributed teams.
13 User-friendly input
The importance of user-friendliness. Balance between user-, vs. developer-friendly and foolproof vs.
expert-user input. Automated user-input for verification & validation and uncertainty quantification.
14 Learning from history
Standing on the shoulders of giants. Not invented here vs. Proudly found elsewhere. Engineering project:
in spec, on time, within budget. Case studies: (1) Software project management and quality engineering
practices for complex, coupled multiphysics, massively parallel computational simulatinos: Lessons learned
from ASCI at Los Alamos National Laboratory, (2) The ZeroMQ Community: Large architectures, The
ZeroMQ process, Designing for innovation, Burnout, Patterns for success.

SZAMONKERESI ES ERTEKELESI RENDSZERE / ASSESMENT'S METHOD

Course requirements:
* Attendance/signature: 50% mandatory
* No exam
* Grades based on degree of participation in team project:
(1) Actively participate in team communication
1: inactive, 2: does what is necessary, 3: proactive on his own task, 4: even helps others
(2) Successful use of productivity tools
1: basic terminal/tools user, 2: good terminal/tools user but needs gui for multiple tasks, 3: can do most
tasks in terminal, rarely needs gui, 4: terminal guru: can do everything in terminal if necessary
(3) Successful use of version control
1: knows basic git cmds, 2: knows intermediate git cmds, 3: knows advanced git cmds, confident with
merge conflicts, 4: knows advanced git cmds, e.g., complex history rewriter
(4) Contribute to project build system
1: basic build system contributor: change existing code, 2: basic new contributions to build system, 3:
nontrivial new contributions to build system, 4: comfortable writing new build system code
(5) Actively participate in code review
1: successfully follows team code review procedure, 2: follows and correctly implements instructions

2024.12.10. 11:37:15 NEPTUN.NET Egységes Tanulmanyi Rendszer 2



from peers, 3: suggests at least one review comment to others's chage-set, 4: actively contributes to other's
change-sets
(6) Hook up a third-party library to our code product
1: requires substatial help hooking up lib, 2: needs little help hooking up lib, 3: hooks up lib without
help, 4: even helps others hooking up other lib
(7) Participate in writing/generating code documentation
1: writes only self-documenting code, 2: correctly documents interfaces, 3: contributes to descriptive doc
pages, 4: writes detailed doc page(s) complete with theory, equations, figures, basic usage, testing functionality
(8) Understand and contribute to test system setup and contribute tests
1: adds a test to existing test harness, 2: adds multiple types of tests to existing test harness, 3:
contributes to testing infrastructure, 4: substantial contributions to creating testing infrastructure
* Grades:
0-16: 1
17-20: 2
21-24:3
25-28: 4
28-32:5

KOTELEZO IRODALOM / OBLIGATORY MATERIAL

https://www.indeed.com/career-advice/finding-a-job/computer-science-vs-software-engineering
https://en.wikipedia.org/wiki/Terminal\ multiplexer
https://linuxcommandlibrary.com/basic/oneliners

https://github.com/jarun/nnn

https://github.com/wting/autojump

https://github.com/junegunn/fzf
https://git.hackliberty.org/Awesome-Mirrors/awesome-cli-apps

https://git.hackliberty.org/ Awesome-Mirrors/Awesome-Linux-Software
https://git.hackliberty.org/Awesome-Mirrors/awesome-math
https://git.hackliberty.org/hackliberty.org/Hack-Liberty-Resources#system-administration
https://en.wikipedia.org/wiki/Comparison_of documentation_generators
https://en.wikipedia.org/wiki/List_of unit testing frameworks
https://stackoverflow.com/a/1408464

https://github.com/will133/vim-dirdiff

https://git-scm.com/docs/gittutorial
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://egghead.io/courses/how-to-contribute-to-an-open-source-project-on-github
https://help.github.com/en/articles/fork-a-repo

https://git-scm.com/book/en/v2

https://cliutils.gitlab.io/modern-cmake

https://www.doxygen.nl

https://www parasoft.com/blog/measuring-code-coverage
https://gce.gnu.org/onlinedocs/gec/Geov.html

https://cppcheck.sourceforge.io

https://codecov.io

https://sonarqube.org

https://nvie.com/posts/a-successful-git-branching-model
https://resources.idgenterprise.com/original/AST-0053933 seven_qualities_of wildly desirable software.pdf
https://doi.org/10.1177/1094342004048534
https://abseil.io/resources/swe-book/html/ch18.html
https://en.wikipedia.org/wiki/Software design

https://www tatvasoft.com/blog/top-12-software-development-methodologies-and-its-advantages-

2024.12.10. 11:37:15 NEPTUN.NET Egységes Tanulmanyi Rendszer 3



disadvantages/

https://docs.github.com/en/get-started/using-github/github-flow
https://zguide.zeromq.org/docs/chapter6

https://www 3pillarglobal.com/insights/blog/the-importance-of-code-reviews
https://distantjob.com/blog/6-reasons-why-code-reviews-are-especially-important-for-remote-teams/
https://scicomp.stackexchange.com/questions/14569/test-set-for-linear-solvers

https://www .perforce.com/blog/sca/what-static-analysis

AJANLOTT IRODALOM / RECOMMENDED MATERIAL

2024.12.10. 11:37:15 NEPTUN.NET Egységes Tanulmanyi Rendszer



